Vectorial Information for Arabidopsis Planar Polarity Is Mediated by Combined AUX1, EIN2, and GNOM Activity
نویسندگان
چکیده
Cell polarity is commonly coordinated within the plane of a single tissue layer (planar polarity), and hair positioning has been exploited as a simple marker for planar polarization of animal epithelia . The root epidermis of the plant Arabidopsis similarly reveals planar polarity of hair localization close to root tip-oriented (basal) ends of hair-forming cells . Hair position is directed toward a concentration maximum of the hormone auxin in the root tip , but mechanisms driving this plant-specific planar polarity remain elusive. Here, we report that combinatorial action of the auxin influx carrier AUX1, ETHYLENE-INSENSITIVE2 (EIN2) , and GNOM genes mediates the vector for coordinate hair positioning. In aux1;ein2;gnom eb triple mutant roots, hairs display axial (apical or basal) instead of coordinate polar (basal) position, and recruitment of Rho-of-Plant (ROP) GTPases to the hair initiation site reveals the same polar-to-axial switch. The auxin concentration gradient is virtually abolished in aux1;ein2;gnom eb roots, where locally applied auxin can coordinate hair positioning. Moreover, auxin overproduction in sectors of wild-type roots enhances planar ROP and hair polarity over long and short distances. Hence, auxin may provide vectorial information for planar polarity that requires combinatorial AUX1, EIN2, and GNOM activity upstream of ROP positioning.
منابع مشابه
A Theoretical Model for ROP Localisation by Auxin in Arabidopsis Root Hair Cells
BACKGROUND Local activation of Rho GTPases is important for many functions including cell polarity, morphology, movement, and growth. Although a number of molecules affecting Rho-of-Plants small GTPase (ROP) signalling are known, it remains unclear how ROP activity becomes spatially organised. Arabidopsis root hair cells produce patches of ROP at consistent and predictable subcellular locations...
متن کاملAn early secretory pathway mediated by GNOM-LIKE 1 and GNOM is essential for basal polarity establishment in Arabidopsis thaliana.
Spatial regulation of the plant hormone indole-3-acetic acid (IAA, or auxin) is essential for plant development. Auxin gradient establishment is mediated by polarly localized auxin transporters, including PIN-FORMED (PIN) proteins. Their localization and abundance at the plasma membrane are tightly regulated by endomembrane machinery, especially the endocytic and recycling pathways mediated by ...
متن کاملAuxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators.
The plant hormones auxin and ethylene have been shown to play important roles during root hair development. However, cross talk between auxin and ethylene makes it difficult to understand the independent role of either hormone. To dissect their respective roles, we examined the effects of two compounds, chromosaponin I (CSI) and 1-naphthoxyacetic acid (1-NOA), on the root hair developmental pro...
متن کاملAluminium-induced inhibition of root elongation in Arabidopsis is mediated by ethylene and auxin
Aluminium (Al) is phytotoxic when solubilized into Al(3+) in acidic soils. One of the earliest and distinct symptoms of Al(3+) toxicity is inhibition of root elongation. To decipher the mechanism by which Al(3+) inhibits root elongation, the role of ethylene and auxin in Al(3+)-induced inhibition of root elongation in Arabidopsis thaliana was investigated using the wild type and mutants defecti...
متن کاملPIN auxin efflux carrier polarity is regulated by PINOID kinase-mediated recruitment into GNOM-independent trafficking in Arabidopsis.
The phytohormone auxin plays a major role in embryonic and postembryonic plant development. The temporal and spatial distribution of auxin largely depends on the subcellular polar localization of members of the PIN-FORMED (PIN) auxin efflux carrier family. The Ser/Thr protein kinase PINOID (PID) catalyzes PIN phosphorylation and crucially contributes to the regulation of apical-basal PIN polari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 16 شماره
صفحات -
تاریخ انتشار 2006